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We study the spread of Hantavirus over a host population of deer mice using a population dynamics model.
We show that taking into account the internal fluctuations in the mouse population due to its discrete character
strongly alters the behavior of the system. In addition to the familiar transition present in the deterministic
model, the inclusion of internal fluctuations leads to the emergence of an additional deterministically hidden
transition. We determine parameter values that lead to maximal propagation of the disease and discuss some
implications for disease prevention policies.
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I. INTRODUCTION

Hantavirus epidemics have been studied extensively in
the biological literature following a number of outbreaks in
the North American Southwest in the 1990s[1]. The host of
this infection is the deer mouse, the most numerous mammal
in North America. The virus is transmitted among deer mice
via biting and to humans via contact with their excreta.

Recently, the Hantavirus has been receiving increasing at-
tention in the physical and mathematical literature. A basic
population dynamics model was introduced and solved by
Abramson and Kenkre[2], who also analyzed the spatiotem-
poral patterns of the infection. Monte Carlo simulations were
performed by Aguirreet al. [3], and propagating fronts of the
disease were analyzed by Abramsonet al. [4]. A review of
the model can be found in[5]. The relation between out-
breaks of the disease and seasonal changes was explored by
Bucetaet al. [6]. This collection has shed light on the mecha-
nisms of propagation of the disease among mice and will
hopefully help design more effective prevention policies.

In this paper we go a step further and analyze the effects
of the internal fluctuations on the propagation of the disease,
first studied by Aguirreet al. [3] via Monte Carlo simulations
and here studied analytically. These fluctuations are inevi-
table because the mouse population is discrete and finite, and
they may have profound consequences, as reported by Escu-
deroet al. [7] using a generic population dynamics model.

The basic model introduced in[5] incorporates birth,
death, competition for resources, and infection. The model
reads

dM

dt
= sb − cdM −

M2

K
, s1ad

dMI

dt
= − cMI −

MIM

K
+ asM − MIdMI , s1bd

whereM stands for the total number of mice,MI for the total
number of infected mice,b is the birth rate coefficient,c the
death rate coefficient,a the infection rate coefficient, andK
the carrying capacity that characterizes the resources avail-
able to the mice and the resulting competition. The steady-
state value of the total mouse population isM =Ksb−cd. One
can see that there is a transcritical bifurcation atK=Kc, with

Kc ;
b

fasb − cdg
. s2d

WhenK,Kc the stable point

M = Ksb − cd, MI = 0 s3d

has zero infected mice, while whenK.Kc the stable point
includes a positive number of infected mice:

M = Ksb − cd, MI = Ksb − cd −
b

a
. s4d

The two rate equations can be thought of as describing two
“reactants”M and MI undergoing four types of “reactions”
with rate coefficientsa, b, c, andK−1, respectively. One of
these conserves the total number of mice(the infection),
while the other three(birth, death, competition) do not. Note
that Eq.(1a) depends only on the latter three, whose effect
on the total population can thus be studied separately from
the issue of infection. Infected pregnant mice produce Hanta
antibodies that keep their foetus free from the infection. Con-
sequently, there is no birth term in Eq.(1b). Also, there is no
recovery term in the model because mice become chronically
infected with the virus.

The analysis of the internal fluctuations in the mouse
population due to the discrete and finite sizes of the popula-
tions requires generalization of the mean-field model to a
stochastic description—e.g., a master equation. In this paper
we start with such a master equation, but at the very outset
we outline some reasonable approximations that lead to a
mathematically tractable model.
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A full master equation description of the problem would
involve Psn,nI ,td, the probability distribution function for
there to ben total mice andnI infected mice at timet. We
find this full master equation to be analytically intractable.
We therefore break the problem up into two parts as follows.
First, we formulate a master equation for the reduced prob-
ability distribution functionPsn,td associated only with the
mean-field equation(1a). This master equation(which is not
influenced by the infection) is tractable, as we shall see. We
then argue that the fluctuations in theinfectedmouse popu-
lation arise from two sources. One is the dependence onM in
Eq. (1b) and the fact that this total population fluctuates.
Having solved the master equation associated withM, we are
able to incorporate these fluctuations into the stochastic de-
scription of infected mice. We will show that the effects of
these fluctuations may be profound, especially when the
mean mouse population is not too large, and may lead to
unexpected consequences. These are the new features that
we are particularly interested in exploring. The other arises
from the additional inherent fluctuations in the number of
infected mice due to the fact that this population is also finite
and discrete. These are especially important when the num-
ber of infected mice is small, but we do not include them
explicitly in our equations, again because of tractability
problems. This is not as serious as one might think because
we do know their consequences, which can also be profound
(as we have shown in[7]): these fluctuations may cause a
small population of infected mice to disappear entirely. In
other words, if one is in a regime where the population of
infected mice is small in the absence of these fluctuations,
consideration of these fluctuations might eliminate this popu-
lation entirely. Thus, results obtained without consideration
of these fluctuations can be thought of as an upper bound on
the number of infected mice. At worst one would be overes-
timating the presence of infected mice in the regime where
the number of infected mice is in any case small or zero.

In Sec. II we present the stochastic model for the total
mouse population. Section III deals with the stochastic
model for the infected mouse population, and in Sec. IV we
discuss the results of the analysis. We summarize our con-
clusions in Sec. V.

II. STOCHASTIC MODEL FOR TOTAL
MOUSE POPULATION

The master equation for the total mouse population is eas-
ily written down if we think explicitly of the “reactions”
contributing to Eq.(1a). They are births,

M→
b

M + M , s5d

deaths,

M→
c

x , s6d

and competition for resources,

M + M→
K−1

M . s7d

The master equation describing these processes is

dPsn,td
dt

= bfsn − 1dPsn − 1,td − nPsn,tdg + cfsn + 1d

3Psn + 1,td − nPsn,tdg + K−1fsn + 1dnPsn + 1,td

− nsn − 1dPsn,tdg. s8d

This equation is not tractable as it stands, but it is amenable
to a system size expansion as introduced by van Kampen
[8,9]. A system size expansion is appropriate when the sys-
tem is “large” or, as in our case, the species under consider-
ation numerous. It is important to note that this implies that
the steady-state solution forM given in Eqs.(3) and (4),
which we expect the mean of the stochastic solution to re-
produce, must therefore be “large”; that is,K must be pro-
portional to the system sizeV. The ratio

d ;
V

K
s9d

must be essentially independent of the system size for this
analysis to be appropriate. To implement a system size ex-
pansion we thus write the third coefficient on the right of Eq.
(8) asK−1=d/V.

The implemention of a system size expansion requires
several steps. First, althoughn is a discrete variable, we can
represent the discrete changes inn via an infinite series of
derivatives in whichn is treated as a continuous variable:

fsn ± 1d = expS±
]
]nD fsnd = o

j=0

`
s±1d j

j !
] j

]n j fsnd. s10d

This exact relation allows us to rewrite the master equation
(8) as

dPsn,td
dt

= Fbo
j=1

`
s− 1d j

j !
] j

]n j + co
j=1

`
1
j !

] j

]n jGnPsn,td

+
d
Vo

j=1

`
1
j !

] j

]n j nsn − 1dPsn,td. s11d

Next, one makes the heuristic assumption that one can per-
form the change of variables

n → Vfstd + V1/2z, s12d

wherefstd is the mean value of the mouse population den-
sity andz represents the fluctuations around the mean. We
then define the probability distribution

rsz,td =
Psn,td
V1/2 . s13d

Applying the standard chain rule

S ]Psn,td
]t

D
n

= S ]rsz,td
]t

D
z
+ S ]rsz,td

]z
D

t
S ]z

]t
D

n
s14d

together with the relation which follows from the change of
variables relation,
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S ]z

]t
D

n
= − V1/2dfstd

dt
, s15d

we can rewrite the master equation in terms of the new
distribution:

]rsz,td
]t

− V1/2df

dt
]rsz,td

]z

= Fbo
j=1

`

V−j /2s− 1d j

j !
] j

]zj + co
j=1

`

V−j /2 1
j !

] j

]zjG
3sVf + V1/2zdrsz,td +

d
Vo

j=1

`

V−j /2 1
j !

] j

]zj

3sVf + V1/2zdsVf + V1/2z− 1drsz,td. s16d

This equation, known as the Kramers-Moyal expansion, is
still exact. Truncation of this series must be handled care-
fully [10]. Here we implement the well-known truncation
scheme based on the system size expansion of van Kampen
[8,9].

In the large-system-size limit there are three divergent
terms in Eq.(16) proportional toV1/2]r /]z that must cancel;
that is, we must require that

df

dt
= sb − cdf − df2. s17d

Note that this exactly corresponds to Eq.(1a); that is,fstd is
indeed the mean population density. In the steady state we
thus have

f =
b − c

d
. s18d

Using this result in the surviving terms in Eq.(16) in the
large-V limit then leads to the Fokker-Planck equation

]r

]t
= sb − cd

]szrd
]z

+
bsb − cd

d

]2r

]z2 . s19d

The steady-state solution of Eq.(19) for the probability den-
sity of the stochastic variablez with natural boundary condi-
tions at ±̀ is given by

rszd = S d

2pb
D1/2

es−d/2bdz2
, s20d

a Gaussian distribution centered at zero and of width propor-
tional toÎb/d. This in turn implies that in the steady state the
total numbern of mice also has a Gaussian distribution
whose mean is the mean number of mice predicted by the
deterministic model and whose width is proportional toÎKb.

The internal fluctuations thus do not alter the behavior of
the total number of mice in any dramatic way. They simply
lead to a Gaussian distribution around the deterministic mean
whose width increases with increasing birth rate and increas-
ing carrying capacity. However, as we will see in the follow-
ing sections, the consequences of this distribution on the
number of infected mice can be unexpected.

III. STOCHASTIC MODEL FOR INFECTED
MOUSE POPULATION

We now return to the infected mouse population, whose
evolution is described in mean field by Eq.(1b). While we
are ignoring the internal fluctuations that arise from the fact
that this population is finite and discrete(as discussed ear-
lier), we do wish to provide a stochastic description that
incorporates the effects of the fluctuations in the total mouse
populationnstd. Our results of the previous section indicate
that we can think ofnstd as a stochastic variable,

nstd = Ksb − cd + dnstd = M + dnstd, s21d

where the fluctuationsdnstd have zero mean and are gener-
ated from the Ornstein-Uhlenbeck stochastic differential
equation

ddn

dt
= − sb − cddn + Î2Kbsb − cdjstd. s22d

Herejstd is zero-centeredd-correlated Gaussian noise of unit
intensity,kjstdjst8dl=dst− t8d. In the stationary state the cor-
relation function of the fluctuations is then

kdnstddnst8dl = Kbe−sb−cdut−t8u. s23d

We include these fluctuations in Eq.(1b) by replacingn with
Ksb−cd+dn. The resulting stochastic differential equation
reads

dnI

dt
= faKsb − cd − bgnI − anI

2 +
a − K−1

Îb − c
nIzstd, s24d

wherezstd is an Orstein-Uhlenbeck process with zero mean
and correlation function

kzstdzst8dl = Kbsb − cde−sb−cdut−t8u. s25d

This is our basic stochastic equation for the infected popula-
tion. The intensity of these fluctuations is determined by the
width of the total mouse population distribution. The corre-
lation time tc=sb−cd−1 is a measure of the time it takes a
total population diminished by fluctuations to recover.

Becausezstd is a “colored noise” with finite correlation
time, the exact solution of the problem(24) and (25) is not
known. In particular, there is no exact Fokker-Planck equa-
tion for the probability distribution functionPsnI ,td that the
number of infected mice isnI at timet. A number of approxi-
mate Fokker-Planck equation schemes can be found in the
literature [12], some of which have the virtue of becoming
exact in both the limitstc→0 andtc→`. Since these theo-
ries lead to a qualitatively similar panorama of possibilities,
we apply the simplest of these theories, developed by Fox
[13,14]. The resulting effective Fokker-Planck equation is

]

]t
PsnI,td = −

]

]nI
GsnIdPsnI,td

+
]

]nI
gsnId

]

]nI
gsnIdDsnIdPsnI,td, s26d

where
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GsnId = faKsb − cd − bgnI − anI
2, s27d

gsnId =
a − K−1

Îb − c
nI , s28d

and

DsnId =
Kbsb − cd
b − c + anI

. s29d

The stationary solution of this equation is

PsnId = NS1 +
a

b − c
nIDn

I

S−1+
sb−cdKfasb−cdK−bg

bsaK − 1d2
D

3expF−
Ka2nI

2

2bsaK − 1d2 +
aKfaKsb − cd − 2b + cgnI

bsaK − 1d2 G ,

s30d

whereN is the normalization constant. In the next section we
analyze and comment on the interesting features of this so-
lution.

IV. RESULTS FOR INFECTED MOUSE POPULATION

The first point to note is that the mean number of mice,

MI = knIl =E
0

`

dnInIPsnId, s31d

is exactly as predicted in the mean-field theory; cf. Eqs.(3)
and (4). However, here there are distributions of infected
mouse populations underlying this mean, and our interest lies
in the different shapes of these distributions in different pa-
rameter regimes and in the additional information beyond the
mean contained in these distributions. The distributions, de-
scribed in detail below, are sketched in Fig. 1, where we
present the phase diagrams of the system insK ,ad space for
fixed b and c. The values ofb and c have been chosen to
match those used in earlier Monte Carlo simulations[3]
and/or to make most evident the different behaviors that are
observed in the system.

Various phase boundary lines are shown in Fig. 1. The
solid curves in both panels are the curvesK=Kc. When K
,Kc the probability distribution(30) cannot be normalized
because it has a nonintegrable singularity atnI =0. Since this
is a fixed point of the dynamics, the probability distribution
must be interpreted as ad function centered at zero[9]. This
can be shown directly from the stochastic differential equa-
tion (24). The coefficient of the quadratic termnI

2 is always

negatives−ad. We can therefore bound the solutions from
above by simply dropping the quadratic term. The resulting
linear equation can be integrated explicitly. When the coef-
ficient of the linear term is negative—which it is if and only
if K,Kc—it follows directly that the solution decays expo-
nentially to zero ast→`. Since the solutionnIstd is bounded
above by zero ast→` for any realization of the fluctuations,
it follows that the probability distribution goes to ad func-
tion atnI =0. The insets at the lower left of each panel in Fig.
1 are a schematic of this behavior. WhenK crosses theKc
curve there is still a divergence atnI =0, but the probability
distribution becomes integrable and hence normalizable. The
most probable value for the infected population is still zero,
but nonzero values now have a finite probability and the
mean value of infected mice is positive. The lower right-
hand insets in both panels are sketches of this behavior,
which persists as a function of increasingK until the carrying
capacity reaches a second critical value:

Kc
* =

2b

bf2a − sb − cdg + Îbsb − cdfb2 − cs4a + bdg
. s32d

WhenK crosses the curveK=Kc
* the divergence in the dis-

tribution (30) disappears and the most probable number of
infected mice moves to finite values. The curve has a diver-

FIG. 1. Phase diagrams for the infected mouse population in
sK ,ad space. The solid curves in both panels are the curvesK=Kc.
The dashed curves areK=Kc

* . The dash-dotted curves are atK
=Kc

** . Upper panel:b=0.8, c=0.5. Lower panel:b=0.5, c=0.2.
The values ofac are 0.12 and 0.19 in the upper and lower panels,
respectively. The insets are schematics of the probability distribu-
tions in each region.
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gent asymptote ata=0, but its behavior as a function ofa
otherwise depends on the other parameters. Ifb,2c, thenKc

*

also diverges ata=ac;sb−cd2/b. This is the situation in the
upper panel of Fig. 1. On the other hand, ifb.2c, thenKc

* is
complex when a.ac;bsb−cd /4c, thus producing the
abrupt vertical boundary seen in the lower panel. This second
case corresponds to the parametersb and c in the Monte
Carlo simulations of Aguirreet al. [3]. In either case, within
the region enclosed by theKc

* curve (dashed curve in the
figure) the probability distribution goes to zero at the origin
and has a maximum at a finite value ofnI, as shown in the
upper left sketches in both panels. Both the average number
of infected mice and the most probable number of infected
mice are now positive. Note that we have labeled the right-
most value ofa on the dashed curve asac, whether it is an
asymptote as in the upper panel or the abrupt ending point of
the curve as in the lower panel.

There is an additional transition curve, more subtle than
the other two, drawn as the dash-dotted curves in both panels
in Fig. 1. We denote this transition curve asKc

** . On the
upper right in both panels is the sketch of the probability
distribution in this region. Here the probability distribution
diverges at zero, but another maximum develops at a finite
number of infected mice. This maximum is found as the
finite positive root of the derivative conditiondPsnId /dnI

=0. The dash-dotted curves in the phase diagrams indicate
the location of this transition.

A number of points about these results deserve special
highlighting. The particular behavior just described for large
K and a (divergence at the origin and also another maxi-
mum) is entirely due to the fact that the internal fluctuations
are colored. The correlation time of these fluctuations issb
−cd−1, and the color has arisen naturally and not as an addi-
tional assumption. It is interesting to note that the Monte
Carlo simulation results of Aguirreet al. [3] exhibit a num-
ber of features that might be related to the results that we
have derived here. One is that in their simulations the num-
ber of infected mice as a function ofK jumps discontinu-
ously from zero to a finite number(whereas the mean-field
value does not). They note that a justification for this result
lies in the discreteness of the number of mice and the exis-
tence of fluctuations. In our continuous language, the behav-
ior they observe might reflect the abrupt transition between
thed-function distribution(or the one with a maximum at the
origin) to the one with a zero probability density of no in-
fected mice asK increases. Their simulations use the value
a=10−2. To support this argument further, we have plotted in
Fig. 2 the ratio of the dispersion to the mean for these pa-
rameter values. The dispersion is of the order of the mean
and, near the transition valueKc, the ratio actually diverges.
The Monte Carlo behavior is also influenced by the internal
fluctuations in the infected mice population that we have not
taken into account in our model. We have elsewhere pursued
the argument that a possible criterion for the likely extinction
of a species is precisely that the dispersion be of the same
size as the mean[7]. The substantial width of the distribution
might make itself apparent in a simulation through the high
likelihood of absence of the infected species. For compari-
son, we have also plotted the ratio of the dispersion to the

mean for a value ofa.ac. The fluctuations are now decid-
edly smaller, even though we are in a regime of far fewer
infected mice on average(as indicated by the values ofK). It
would be interesting to see whether the size of the jump in
the infected mouse population at the transition would de-
crease in a Monte Carlo simulation witha.ac.

Finally, we comment on three last points. One concerns
the validity of the system size expansion. The total mean
number of mice in the population isKsb−cd, and the system
size expansion is valid if this number is in some sense suf-
ficiently large(the expansion is valid if the neglected terms
are small). While we have not explicitly checked the validity,
in most of the regimes under discussion the number of in-
fected mice is an order of magnitude greater than unity. Our
second point is to stress that the fluctuations that lead to the
distributions of infected mice are entirely due to the discrete
and finite character of thetotal number of mice. And yet,
while the ratio of the width of the distribution of total mice
to the mean number of total mice,sM /M =Îsb/Kd / sb−cd, is
small in most of the phase diagram, the width of the distri-
bution induced in the number of infected mice is relatively
large[of Osù1d] in most of the diagram. The third point is a
reminder that this theory has not included the fluctuations
caused directly by the fact that the number of infected mice
is discrete and finite. These fluctuations would further
broaden the distributions.

V. CONCLUSIONS

We have considered the effect of internal fluctuations in
the total mouse population on the number of infected mice.

FIG. 2. Ratio of the dispersion to the mean number of infected
mice forb=0.5 andc=0.2. Upper panel:a=10−2,ac. Lower panel:
a.ac.
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Although these fluctuations cause no dramatic effects in the
total mouse population, yielding a Gaussian distribution of
relatively small variance for a sufficiently large population,
they have a rather strong effect on the distribution of infected
mice. Because the fluctuations are not “direct” but instead
appear indirectly through the coupling between infected and
uninfected mice, the fluctuations necessarily and naturally
appear as colored in the equations that describe the evolution
of infected mice. This leads to a variety of effects beyond
those that would be caused by simple white noise[11,12].
The mean infected population in this model is exactly that
predicted in mean field. However, while the mean-field
model predicts one critical value of the carrying capacity
parametersKcd such that below this value there is no infec-
tion and above this value there is, the stochastic model leads
to three critical values(Kc, Kc

* , and Kc
** ). The first, which

occurs at the same critical value as that of the deterministic
model, here corresponds to a transition between a state with
no infected mice to an intermediate state in which the most
probable state is still one with no infected mice but with a
finite probability of infection. The second describes a transi-
tion between this intermediate state and the outbreak state,
where the probability distribution that there is no infection
goes to zero. The intermediate statesKc,K,Kc

*d displays
different behaviors depending on the parameter values. In
particular, in some parameter ranges the intermediate state
has very few infected mice. We argued that the inclusion of
the internal fluctuations in the infected mouse population
(which was not considered due to analytic difficulties) would
probably lead to extinction of this small number of infected
mice. This then means that the effective transition between
nonepidemic and epidemic states may occur atKc

* rather than
at Kc. We also identified another transition curve,Kc

** , be-
yond which the probability diverges at zero but where an-
other maximum develops at a finite number of infected mice.

It is interesting to consider these results, at least qualita-
tively, in the context of actual outbreaks of Hantavirus(see
[6] and references therein). In the Four Corners desert region
of the North American Southwest, the carrying capacityK is

normally low. During the rainy season the infection rate pa-
rametera is low, a combination that according to Fig. 1 leads
to a state in which there are no infected mice. During the dry
seasona is high. The illness appears gradually and can per-
sist even for low values ofK. This may in part explain why
the maximum number of infected mice tends to occur at the
end of the dry season. During the El Niño the high value of
K and low value ofa can lead to the state where the prob-
ability distribution has no divergence at the origin—that is,
to a state of epidemic outbreak. We might thus conjecture
that the outbreak of Hantavirus observed during the El Niño
is produced by a different mechanism(abrupt transition) than
the usual infection cycle during the dry season, which ap-
pears through a gradual transition.

These features may be useful in the design of more effec-
tive prevention policies. For instance, an increase in the ef-
fective annihilation rate of the mice(by either increasing the
death rate or decreasing the birth rate or both) might help
because it increases the relative size of the region in param-
eter space in which the infected mouse population distribu-
tion has a divergence at the origin(the state of no infected
mice). The most effective strategy for the control of Hantavi-
rus outbreaks is the reduction of the carrying capacityK so
as to cross from one regime to another with a higher prob-
ability of no infected mice.
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